
Sequences: Strings, Lists,
and Files

1

Objectives

• To understand the string data type and how strings are represented
in the computer.

• To be familiar with various operations that can be performed on
strings through built-in functions and the string library.

2

The String Data Type

• The most common use of personal computers is word processing.

• Text is represented in programs by the string data type.

• A string is a sequence of characters enclosed within quotation marks
(") or apostrophes (').

3

The String Data Type

>>> str1="Hello"

>>> str2=‘Spring'

>>> print(str1, str2)

Hello Spring

>>> type(str1)

<class 'str'>

>>> type(str2)

<class 'str'>

4

The String Data Type

•Getting a string as input

>>> firstName = input("Please enter your name: ")

Please enter your name: John

>>> print("Hello", firstName)

Hello John

•Notice that the input is not evaluated. We want to
store the typed characters, not to evaluate them as
a Python expression.

5

The String Data Type

• We can access the individual characters in a string through indexing.

• The positions in a string are numbered from the left, starting with 0.

• The general form is <string>[<expr>], where the value of expr
determines which character is selected from the string.

6

The String Data Type

>>> greet = "Hello Bob"

>>> greet[0]

'H'

>>> print(greet[0], greet[2], greet[4])

H l o

>>> x = 8

>>> print(greet[x - 2])

B

7

H e l l o B o b

0 1 2 3 4 5 6 7 8

The String Data Type

• In a string of n characters, the last character is at
position n-1 since we start counting with 0.

•We can index from the right side using negative
indexes.

>>> greet[-1]

'b'

>>> greet[-3]

'B'

8

H e l l o B o b

0 1 2 3 4 5 6 7 8

The String Data Type

• Indexing returns a string containing a single character from a larger
string.

• We can also access a contiguous sequence of characters, called a
substring, through a process called slicing.

9

The String Data Type

• Slicing:
<string>[<start>:<end>]

• start and end should both be ints

• The slice contains the substring beginning at position start and runs
up to but doesn’t include the position end.

10

The String Data Type

>>> greet[0:3]

'Hel'

>>> greet[5:9]

' Bob'

>>> greet[:5]

'Hello'

>>> greet[5:]

' Bob'

>>> greet[:]

'Hello Bob'

11

H e l l o B o b

0 1 2 3 4 5 6 7 8

The String Data Type

• If either expression is missing, then the start or the end of the string
are used.

• Can we put two strings together into a longer string?

• Concatenation “glues” two strings together (+)

• Repetition builds up a string by multiple concatenations of a string
with itself (*)

12

The String Data Type

•The function len will return the length of a string.
>>> “Hello" + “world"

‘HelloWorld'

>>> “Hello" + "And" + “world"

' Hello And world '

>>> 3 * "spam"

'spamspamspam'

>>> "spam" * 5

'spamspamspamspamspam'

>>> (3 * "spam") + ("eggs" * 5)

'spamspamspameggseggseggseggseggs'

13

The String Data Type

>>> len("spam")

4

>>> for ch in “Hello!":

print (ch)

Hello!

14

The String Data Type

15

Operator Meaning

+ Concatenation

* Repetition

<string>[] Indexing

<string>[:] Slicing

len(<string>) Length

for <var> in <string> Iteration through characters

Simple String Processing

• Usernames on a computer system
• First initial, first seven characters of last name

get user’s first and last names

first = input("Please enter your first name (all lowercase): ")

last = input("Please enter your last name (all lowercase): ")

concatenate first initial with 7 chars of last name

uname = first[0] + last[:7]

16

Simple String Processing

>>>

Please enter your first name (all lowercase): john

Please enter your last name (all lowercase): doe

uname = jdoe

>>>

Please enter your first name (all lowercase): donna

Please enter your last name (all lowercase): rostenkowski

uname = drostenk

17

Simple String Processing

• Another use – converting an int that stands for the month into the
three letter abbreviation for that month.

• Store all the names in one big string:
“JanFebMarAprMayJunJulAugSepOctNovDec”

• Use the month number as an index for slicing this string:
monthAbbrev = months[pos:pos+3]

18

Simple String Processing

19

Month Number Position

Jan 1 0

Feb 2 3

Mar 3 6

Apr 4 9

 To get the correct position, subtract one
from the month number and multiply by
three

Simple String Processing

month.py

A program to print the abbreviation of a month, given its number

def main():

months is used as a lookup table

months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = eval(input("Enter a month number (1-12): "))

compute starting position of month n in months

pos = (n-1) * 3

Grab the appropriate slice from months

monthAbbrev = months[pos:pos+3]

print the result

print ("The month abbreviation is", monthAbbrev + ".")

main()

20

Simple String Processing

>>> main()

Enter a month number (1-12): 1

The month abbreviation is Jan.

>>> main()

Enter a month number (1-12): 12

The month abbreviation is Dec.

•One weakness – this method only works where the
potential outputs all have the same length.

21

Strings, Lists, and Sequences

• It turns out that strings are really a special kind of
sequence, so these operations also apply to sequences!

>>> [1,2] + [3,4]

[1, 2, 3, 4]

>>> [1,2]*3

[1, 2, 1, 2, 1, 2]

>>> grades = ['A', 'B', 'C', 'D', 'F']

>>> grades[0]

'A'

>>> grades[2:4]

['C', 'D']

>>> len(grades)

5

22

Strings, Lists, and Sequences

• Strings are always sequences of characters, but lists can be
sequences of arbitrary values.

• Lists can have numbers, strings, or both!

myList = [1, "Spam ", 4, "U"]

23

Strings, Lists, and Sequences

• We can use the idea of a list to make our previous month program
even simpler!

• We change the lookup table for months to a list:

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"]

24

Strings, Lists, and Sequences

• To get the months out of the sequence, do this:
monthAbbrev = months[n-1]

Rather than this:
monthAbbrev = months[pos:pos+3]

25

Strings, Lists, and Sequences

month2.py

A program to print the month name, given it's number.

This version uses a list as a lookup table.

def main():

months is a list used as a lookup table

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = eval(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

main()

•Note that the months line overlaps a line. Python knows
that the expression isn’t complete until the closing] is
encountered.

26

Strings, Lists, and Sequences

month2.py

A program to print the month name, given it's number.

This version uses a list as a lookup table.

def main():

months is a list used as a lookup table

months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

n = eval(input("Enter a month number (1-12): "))

print ("The month abbreviation is", months[n-1] + ".")

main()

• Since the list is indexed starting from 0, the n-1
calculation is straight-forward enough to put in the print
statement without needing a separate step.

27

Strings, Lists, and Sequences

• This version of the program is easy to extend to print out the whole
month name rather than an abbreviation!

months = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]

28

Strings, Lists, and Sequences

• Lists are mutable, meaning they can be changed. Strings
can not be changed.

>>> myList = [34, 26, 15, 10]

>>> myList[2]

15

>>> myList[2] = 0

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"

>>> myString[2]

'l'

>>> myString[2] = "p"

Traceback (most recent call last):

File "<pyshell#16>", line 1, in -toplevel-

myString[2] = "p"

TypeError: object doesn't support item assignment

29

Strings and Secret Codes

• Inside the computer, strings are represented as sequences of 1’s and
0’s, just like numbers.

• A string is stored as a sequence of binary numbers, one number per
character.

• It doesn’t matter what value is assigned as long as it’s done
consistently.

30

Strings and Secret Codes

• In the early days of computers, each manufacturer used their own
encoding of numbers for characters.

• ASCII system (American Standard Code for Information Interchange)
uses 127 bit codes

• Python supports Unicode (100,000+ characters)

31

Strings and Secret Codes

•The ord function returns the numeric (ordinal) code
of a single character.
•The chr function converts a numeric code to the

corresponding character.
>>> ord("A")

65

>>> ord("a")

97

>>> chr(97)

'a'

>>> chr(65)

'A'

32

Strings and Secret Codes

• Using ord and char we can convert a string into and out of numeric
form.

• The encoding algorithm is simple:
get the message to encode
for each character in the message:

print the letter number of the character

• A for loop iterates over a sequence of objects, so the for loop looks
like:
for ch in <string>

33

Strings and Secret Codes

text2numbers.py

A program to convert a textual message into a sequence of

numbers, utlilizing the underlying Unicode encoding.

def main():

print("This program converts a textual message into a sequence")

print ("of numbers representing the Unicode encoding of the message.\n")

Get the message to encode

message = input("Please enter the message to encode: ")

print("\nHere are the Unicode codes:")

Loop through the message and print out the Unicode values

for ch in message:

print(ord(ch), end=" ")

print()

main()

34

Strings and Secret Codes

• We now have a program to convert messages into a type of “code”,
but it would be nice to have a program that could decode the
message!

• The Algorithm for a decoder:
get the sequence of numbers to decode
message = “”
for each number in the input:

convert the number to the appropriate character
add the character to the end of the message

print the message

35

Strings and Secret Codes

• The variable message is an accumulator variable, initially set to the
empty string, the string with no characters (“”).

• Each time through the loop, a number from the input is converted to
the appropriate character and appended to the end of the
accumulator.

36

Strings and Secret Codes

• How do we get the sequence of numbers to decode?

• Read the input as a single string, then split it apart into substrings,
each of which represents one number.

37

Strings and Secret Codes

• The new algorithm
get the sequence of numbers as a string, inString
message = “”
for each of the smaller strings:

change the string of digits into the number it represents
append the ASCII character for that number to message

print message

• Strings are objects and have useful methods associated with them

38

Strings and Secret Codes

• One of these methods is split. This will split a string into substrings
based on spaces.

>>> "Hello string methods!".split()

['Hello', 'string', 'methods!']

39

Strings and Secret Codes

• Split can be used on characters other than space, by supplying the
character as a parameter.

>>> "32,24,25,57".split(",")

['32', '24', '25', '57']

>>>

40

Strings and Secret Codes

•How can we convert a string containing digits into a
number?

•Use eval.
>>> numStr = "500"

>>> eval(numStr)

500

>>> x = eval(input("Enter a number "))

Enter a number 3.14

>>> print x

3.14

>>> type (x)

<type 'float'>

41

Strings and Secret Codes

numbers2text.py

A program to convert a sequence of Unicode numbers into

a string of text.

def main():

print ("This program converts a sequence of Unicode numbers into")

print ("the string of text that it represents.\n")

Get the message to encode

inString = input("Please enter the Unicode-encoded message: ")

Loop through each substring and build Unicde message

message = ""

for numStr in inString.split(i):

convert the (sub)string to a number

codeNum = eval(numStr)

append character to message

message = message + chr(codeNum)

print("\nThe decoded message is:", message)

main()

42

Strings and Secret Codes

• The split function produces a sequence of strings. numString gets
each successive substring.

• Each time through the loop, the next substring is converted to the
appropriate Unicode character and appended to the end of message.

Python Programming, 2/e 43

Strings and Secret Codes

This program converts a textual message into a sequence

of numbers representing the Unicode encoding of the message.

Please enter the message to encode: AP1 is fun!

Here are the Unicode codes:

67 83 49 50 48 32 105 115 32 102 117 110 33

--

This program converts a sequence of Unicode numbers into

the string of text that it represents.

Please enter the ASCII-encoded message: 67 83 49 50 48 32 105 115 32 102 117 110 33

The decoded message is: AP1 is fun!

44

Other String Methods

• There are a number of other string methods. Try them all!
• s.capitalize() – Copy of s with only the first character capitalized

• s.title() – Copy of s; first character of each word capitalized

• s.center(width) – Center s in a field of given width

45

Other String Operations

• s.count(sub) – Count the number of occurrences of sub in s

• s.find(sub) – Find the first position where sub occurs in s

• s.join(list) – Concatenate list of strings into one large string using s as
separator.

• s.ljust(width) – Like center, but s is left-justified

46

Other String Operations

• s.lower() – Copy of s in all lowercase letters

• s.lstrip() – Copy of s with leading whitespace removed

• s.replace(oldsub, newsub) – Replace occurrences of oldsub in s with newsub

• s.rfind(sub) – Like find, but returns the right-most position

• s.rjust(width) – Like center, but s is right-justified

47

Other String Operations

• s.rstrip() – Copy of s with trailing whitespace removed

• s.split() – Split s into a list of substrings

• s.upper() – Copy of s; all characters converted to uppercase

48

Files: Multi-line Strings

• A file is a sequence of data that is stored in secondary memory (disk
drive).

• Files can contain any data type, but the easiest to work with are text.

• A file usually contains more than one line of text.

• Python uses the standard newline character (\n) to mark line breaks.

49

Multi-Line Strings

• Hello
World

Goodbye 32

• When stored in a file:
Hello\nWorld\n\nGoodbye 32\n

Python Programming, 2/e 50

Multi-Line Strings

• This is exactly the same thing as embedding \n in print statements.

• Remember, these special characters only affect things when printed.
They don’t do anything during evaluation.

51

File Processing

• The process of opening a file involves associating a file on disk with
an object in memory.

• We can manipulate the file by manipulating this object.
• Read from the file

• Write to the file

52

File Processing

• When done with the file, it needs to be closed. Closing the file causes
any outstanding operations and other bookkeeping for the file to be
completed.

• In some cases, not properly closing a file could result in data loss.

53

File Processing

• Reading a file into a word processor
• File opened

• Contents read into RAM

• File closed

• Changes to the file are made to the copy stored in memory, not on the disk.

54

File Processing

• Saving a word processing file
• The original file on the disk is reopened in a mode that will allow writing (this

actually erases the old contents)

• File writing operations copy the version of the document in memory to the
disk

• The file is closed

55

File Processing

• Working with text files in Python
• Associate a disk file with a file object using the open function

<filevar> = open(<name>, <mode>)

• Name is a string with the actual file name on the disk. The mode is either ‘r’
or ‘w’ depending on whether we are reading or writing the file.

• Infile = open("numbers.dat", "r")

56

File Methods

•<file>.read() – returns the entire remaining contents
of the file as a single (possibly large, multi-line)
string

•<file>.readline() – returns the next line of the file.
This is all text up to and including the next newline
character

•<file>.readlines() – returns a list of the remaining
lines in the file. Each list item is a single line
including the newline characters.

57

File Processing

printfile.py

Prints a file to the screen.

def main():

fname = input("Enter filename: ")

infile = open(fname,'r')

data = infile.read()

print(data)

main()

• First, prompt the user for a file name

• Open the file for reading

• The file is read as one string and stored in the variable data

58

File Processing

• readline can be used to read the next line from a file, including the
trailing newline character

• infile = open(someFile, "r")
for i in range(5):

line = infile.readline()
print line[:-1]

• This reads the first 5 lines of a file

• Slicing is used to strip out the newline characters at the ends of the
lines

59

File Processing

• Another way to loop through the contents of a file is to read it in with
readlines and then loop through the resulting list.

• infile = open(someFile, "r")
for line in infile.readlines():

Line processing here
infile.close()

60

File Processing

• Python treats the file itself as a sequence of lines!

• Infile = open(someFile, "r")
for line in infile:

process the line here
infile.close()

61

File Processing

• Opening a file for writing prepares the file to receive data

• If you open an existing file for writing, you wipe out the file’s
contents. If the named file does not exist, a new one is created.

• Outfile = open("mydata.out", "w")

• print(<expressions>, file=Outfile)

62

Example Program: Batch Usernames

• Batch mode processing is where program input and output are done
through files (the program is not designed to be interactive)

• Let’s create usernames for a computer system where the first and
last names come from an input file.

63

Example Program: Batch Usernames

userfile.py

Program to create a file of usernames in batch mode.

def main():

print ("This program creates a file of usernames from a")

print ("file of names.")

get the file names

infileName = input("What file are the names in? ")

outfileName = input("What file should the usernames go in? ")

open the files

infile = open(infileName, 'r')

outfile = open(outfileName, 'w')

64

Example Program: Batch Usernames

process each line of the input file

for line in infile:

get the first and last names from line

first, last = line.split()

create a username

uname = (first[0]+last[:7]).lower()

write it to the output file

print(uname, file=outfile)

close both files

infile.close()

outfile.close()

print("Usernames have been written to", outfileName)

65

Example Program: Batch Usernames

•Things to note:
• It’s not unusual for programs to have multiple files open

for reading and writing at the same time.
• The lower method is used to convert the names into all

lower case, in the event the names are mixed upper and
lower case.

66

